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signals are digitally processed at the outputs of two or more receiving sensors,|
it is desirable to estimate the coherence spectrum, both for detection and
position estimation.™

A processing technique for computing arbitrary confidence bounds for
stationary Gaussian signals is presented. New computationally difficult
examples are given for 80-95 percent confidence with independent averages
of 8, 16, 32, 64, and 128. A discussion of the computational difficulties
together with algorithmic details (including the FORTRAN program) are
presented.
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COHERENCE ESTIMATES

* What is coherence?

* How and how accurately
do you estimate it?

THE PURPOSE OF THIS TALK IS TO ANSWER TWO
FUNDAMENTAL QUESTIONS: FIRST, WHAT IS COHERENCE;
SECOND, HOW DO YOU ESTIMATE COHERENCE AND HOW
ACCURATE CAN THIS ESTIMATION BE.

THE MAIN EMPHASIS OF THIS TALK IS THE
EXPLANATION OF COHERENCE AND ITS USEFULNESS.
THE PAPER GIVEN IN THE CONFERENCE RECORD EMPHA-
SIZES HOW TO ESTIMATE COHERENCE AND HOW ACCURATELY
THIS CAN BE DONE. THE IMPORTANCE OF DETERMINING
CONFIDENCE BOUNDS FOR ESTIMATES OF COHERENCE WILL
ONLY BE APPARENT TO SOMEONE WHO WANTS TO ESTIMATE
COHERENCE. THUS, THE TALK THIS MORNING WILL SHOW
HOW USEFUL THE COHERENCE IS AND HOW TO USE THE
RESULTS IN THE COHERENCE RECORD TO DETERMINE THE
ACCURACY WITH WHICH THE COHERENCE CAN BE
ESTIMATED.

=NEXT SLIDE PLEASE-

PURPOSES, WE DEFINE THE COHERENCE BETWEEN TWO
STATIONARY RANDOM PROCESSES, A AND B, As THE
CROSS POWER SPECTRUM DIVIDED BY THE SQUARE ROOT
OF THE PRODUCT OF THE AUTO POWER SPECTRA. THE
COHERENCE IS A FUNCTION OF FREQUENCY AND HAS
THE USEFUL PROPERTY THAT ITS MAGNITUDE SQUARED
1S BOUNDED BETWEEN ZERO AND UNITY. [T IS A
NORMALIZED CROSS SPECTRAL DENSITY THAT, IN

SOME SENSE, MEASURES THE EXTENT TO WHICH TWO
RANDOM PROCESSES ARE SIMILAR. FOR EXAMPLE,

TWO UNCORRELATED RANDOM PROCESSES ARE INCOHERENT;
THAT 1S, THE COHERENCE IS ZERO BETWEEN UNCORRE-
LATED PROCESSES. FURTHER, THE COHERENCE BETWEEN
TWO LINEARLY RELATED PROCESSES IS UNITY. THE
TWO PROCESSES UNDER CONSIDERATION CAN BE AN
UNDERWATER ACOUSTIC SOURCE AND RECEIVER PAIR

OR TWO RECEIVER PAIRS.

=NEXT SLIDE PLEASE-

Ggp (f)
[Gah) Gy(£)]%

Yab (f) =

0 = |*o',,,,(f)|2 <1, V§

a,b either source, receiver pair

or receiver, receiver pair

ACOUSTIC SOURCE

THE TERM COMERENCE HAS SEVERAL DIFFERENT
MEANINGS AND DEFINITIONS. THE ONE WE USE MERE
IS THE COMPLEX COHERENCE OR COEFFICIENT OF
COMERENCY DEFINED BY WeINer IN 1930, For our

ONE PHYSICAL PROBLEM TMAT MOTIVATES THIS
RESEARCH IS THE DESIRE TO PASSIVELY ESTIMATE
GEOGRAPHICAL INFORMATION ABOUT THE STATE OF AN
ACOUSTIC SOURCE. IN THE DEVELOPMENT HERE, AN
ACOUSTIC POINT SOURCE RADIATES SPHERICAL WAVES
THAT ARE RECEIVED FIRST AT ONE SENSOR AND SOME
DELAYED TIME LATER AT A SECOND SENSOR. THE
SOURCE IS ASSUMED STATIONARY FOR THE OBSERVATION
PERIOD AND THE SENSOR SEPARATION IS ASSUMED
KNOWN. EACH RECEIVED WAVEFORM 1S ORSERVED IN
THE PRESENCE OF UNCORRELATED NOISE. TME PRO-
BLEM WE ADDRESS MERE 1S THE PHYSICAL INTER-
PRETATION OF THE COHERENCE FOR THIS MODEL.

=NEXT SLIDE PLEASE-
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n IN THE GENERAL CASE, WE CAN MODEL THE
£ } ACOUSTIC PROPAGATION OF A SINGLE ACOUSTIC SOURCE
. $ Z r e AND NOISE CORRUPTED RECEPTION AT TWO RECEIVERS
4 OCEAN | ® i & AS SHOWN HERE. IN PARTICULAR, WE TREAT THE PATH
; [ FROM THE SOURCE TO EACH RECEIVER AS A LINEAR
g : ; TIME INVARIANT FILTER. THE RECEIVER SIGNALS I'
& m SUB J AND I SUB K CONSIST OF THE FILTER OUTPUTS
g b - AR
£ -1 MODEL [ PLUS NOISE.
4
‘ | v, 2 _ Gm A SPECIAL CASE OF THIS MODEL IS WHEN THE
& el = G, FIRST RECEIVER WAVEFORM CONSISTS OF SIGNAL PLUS
& 3 NOISE, AND THE SECOND RECEIVED WAVEFORM CONSISTS
g 6 lwgy | OF AN ATTENUATED AND DELAYED SIGNAL IN THE
E - = PRESENCE OF UNCORRELATED NOISE. THE MATHEMATICAL
g’ Gn 1 - %, |2 PROBLEM OF ESTIMATING THE TIME DELAY OR EQUIVALENT
SOURCE BEARING AND, THUS, SOURCE RANGE 1S CLOSELY
; RELATED TO COHERENCE.
A SOURCE SIGNAL S EXCITES THE MEDIUM To UNDER CERTAIN ASSUMPTIONS WE CAN SHOW THAT
9 YIELD AN OUTPUT Z. THIS OUTPUT Z IS CORRUPTED THE MAGNITUDE SGUARED co:“if;;’:::‘f:nmnm
5 BY ADDITIVE NOISE N AND RECEIVED AS r'. W RECEIVER PAIRE [S THE PR D: gl oy
g CONSTRUCT A LINEAR MODEL OF THE MEDIUM THAT SOURCE-TO-RECELVER ﬁ:’:‘s’;":‘:m oty
GENERATES AN OUTPUT M. By PROPER CHOICE OF SRS SIGNALNI:UDE L o e B
THE MODEL WE CAN MINIMIZE THE MEAN SQUARE ERROR i RECEWE:R'-‘:z-RECElVER et CllbienE
€, OR DIFFERENCE BETWEEN THE RECEIVED SIGNAL TNE RECERY '

T AND MODEL OUTPUT M. THE MAGNITUDE SOUARED
COHERENCE BETWEEN SOURCE AND RECEIVER IS GIVEN
BY THE RATIO OF THE MODEL OUTPUT POWER TO THE
. RECEIVER OUTPUT POWER. SINCE GAMMA SQUARED IS N
BOUNDED BY UNITY, IT PROVIDES AN INDICATION OF »
4 WHAT PORTION OF THE RECEIVED POWER CAN BE Z A

£y ATTRIBUTED TO A MINIMUM MEAN SQUARE ERROR A
'- LINEAR MODEL OF THE OCEAN MEDIUM. THE POWER b 7 =

RATIO OF THE OCEAN OUTPUT DUE TO THE SOURCE ab N 2 21’
VERSUS AMBIENT IS ALSO DIRECTLY RELATED TO THE Z IA l
SOURCE-TO-RECEIVER COHERENCE. [N PARTICULAR, "

7HIS SIGNAL-TO-NOISE RATIO IS GIVEN BY GAMMA
SQUARED OVER ONE MINUS GAMMA SQUARED.

=NEXT SLIDE PLEASE-

SIRPWIAARRT

NOW THAT COHERENCE MAS BEEN DEFINED, IT 1S
“NEXT SLIDE PLEASE- APPROPRIATE TO DISCUSS ITS ESTIMATION. FROM EACH
OF TWO FINITE DURATION MEMBER FUNCTIONS OF CAPITAL

N SEGMENTS, WE WEIGHT EACH SEGMENT BY A SMOOTH
JM- S; r; WEIGHTING FUNCTION, COMPUTE ITS DISCRETE FOURIER
J R TRANSFORM VIA AN FFT, AND DENOTE THEM A SuB N
§__,‘ n; AND B SUB N . AT ANY PARTICULAR FREQUENCY, THE
.k ™ Sk e COMPLEX COHERENCE 1S ESTIMATED BY COMPUTING THE
! ‘ K -—‘? o THREE SUMMATIONS SHOWN OVER THE AVAILABLE CAPITAL
| . M SEGMENTS. THE LOWER CASE N DENOTES THE N-TH
{ 1 Nk DATA SEGMENT AND THE FREQUENCY INDICATOR IS NOT
' SNOWN. IN THE NUMERATOR, WE MULTIPLY THE FFT oF
2 _ l IZ I.‘. lz THE A PROCESS BY THE COMPLEX CONJUGATE OF THE
I 7!3 g™ I T Ysr j STy FFT oF THE B PROCESS AND SuM OVER N SEGMENTS

. TO OBTAIN AN ESTIMATE OF THE COMPLEX CROSS SPEC-

lY ' TRUM. [N THE DENOMINATOR WE SUM THE MAGNITUDE
G; i’k SQUARED FFTs ovER THE N TIME SEGMENTS. UNDER
i, = CERTAIN SIMPLIFYING ASSUMPTIONS GIVEN IN THE
G" { - |7V, CONFERENCE RECORD WE CAN DETERMINE THE STATISTICS
r: 'k
J OF THIS ESTIMATOR,

=NEXT SLLIDE PLEASE-
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I¥[2 = o7 (0.3, 0.86)

CONCLUSIONS

® COHERENCE
e NORMALIZED CROSS SPECTRUM
o SIGNAL TO NOISE MEASURE
o LINEARITY MEASURE

® ESTIMATION
e DIFFICULT
o BOUNDS LARGE

IN THE CONFERENCE RECORD WE DISCUSS HOW TO
DETERMINE THE CONFIDENCE BOUNDS. FOR A PARTICULAR
NUMBER OF FFT AVERAGES (N = 8) AND A PRESPECIFIED
CONFIDENCE BOUND (95%), WE OBTAIN THE TWO CURVES
SKETCHED HERE. WHEN WE OBTAIN AN ESTIMATE OF
GAMMA SQUARED FROM THE SAME NUMBER OF FFTs As
USED TO DRAW THE CURVES, WE USE THESE CURVES TO
DETERMINE CONFIDENCE BOUNDS. [N PARTICULAR, IF
WE HAVE AN ESTIMATE DENOTED BY AN X ON THE
ORDINATE, WE DRAW A HORIZONTAL LINE FROM THE X
UNTIL IT INTERSECTS BOTH CURVES. THEN WE DROP
TWO VERTICAL LINES TO THE ABSCISSA AND THESE ARE
THE CONFIDENCE BOUNDS. WE CAN THEN STATE THAT
THE TRUE VALUE OF GAMMA SQUARED LIES IN THE
REGION BOUNDED BY THE TWO ABSCISSA VALUES WITH
THE PRESPECIFIED CONFIDENCE. FOR EXAMPLE, WITH
€IGHT FFTs AND AN ESTIMATE OF 0.7, THE 95% con-
FIDENCE BOUNDS ARE 0.3 anp 0.86. With 128 FFTs
AND AN ESTIMATE OF 0.3, THE BoUNDS ARE 0.2 AND
0.38, THus, THE BOUNDS ARE LARGE EVEN WHEN THE
NUMBER OF FFTS 1S LARGE.

=NEXT SLIDE PLEASE-

IN CONCLUSION, WE HAVE LOOKED AT WHAT THE
COHERENCE IS. YE HAVE SEEN THAT IT IS A NORMALIZED
CROSS SPECTRUM THAT CAN PROVIDE A MEASURE OF SIGNAL-
TO-NOISE RATIO AND THE EXTENT TO WHICH THE OCEAN
MEDIUM CAN BE MODELED BY A LINEAR FILTER. IN
TERMS OF MEASURING COHERENCE, WE HAVE PRESENTED
ESTIMATION EQUATIONS THAT DEPEND ON THE APPLICATION
OF SMOOTH WEIGHTING FUNCTIONS AND LARGE NUMBERS OF.
oF FFTs. THESE COMPUTATIONAL DIFFICULTIES RESULT
IN LARGE BOUNDS ON THE COHERENCE ESTIMATES.

IN SUMMARY, THE COHERENCE IS AN EXTREMELY
USEFUL DESCRIPTOR IN UNDERWATER ACOUSTICS THAT
CAN BE ESTIMATED WITH CAREFUL ATTENTION TO DETAIL
AND LARGE NUMBERS OF FFTs,

=SLIDE OFF-

ARE THERE ANY QUESTIONS?




PREPRINT:

TD 5881

Proceedings of the 1978 IEEE International Conference on Acoustics,

Speech, and Signal Processing pb70-613

CONFIDENCE BOUNDS FOR MAGNITUDE-SQUARED COHERENCE ESTIMATES

E. H. Scannell, Jr. and G. Clifford Carter

Naval Underwater Systems Center
New London, CT 08320

ABSTRACT

In underwater acoustics where signals
are digitally processed at the outputs
of two or more receiving sensors, it is
desirable to estimate the cohereace
spectrum, both for detection and position
estimation. A processing technique for
computing arbitrary confidence bounds
for stationary Gaussian signals is pre-
sented. New computationally difficult
examples are given for 80 to 95% confid-
ence with independent averages of 8, 16,
32, 64 and 128. A discussion of the
computational difficulties together with
algorithmic details are presented.

‘INTRODUCTION

The magnitude-squared coherence (MSC)
between two jointly stationary random
processes x(t) and y(t) is defined as

[6,yt01?

Syl = T 5

vy

where (f£) is the cross-spectral density
at frequéncy £ and Gux(f) and Gyy(f) are
the autospectral densities. The AuSC can
be estimated as in {1] by

. §
|Z, zactrr, 0]

X 2 2
Zx(0)| gk,mi

c b4
Cpyt) =

where * denotes complex conjugate, N is
the numder of data segments employed, and
Xa(f) snd Yp(f) are the Fast Fourier
Transform (’ﬂ‘) outputs of the nth data
segments of x(t) and y(t). Both the MSC
and its estimates are bounded by zero and
unity. The cummulative distribution
functions (CD¥) for the MSC estimate in (2)
bave been determined in [1] under the
assumptions that 1) the data are jointly
stationary Gaussian random processes: 2)
the N data segments are independent; 3)
the data segments have beea multiplied by

a smooth weighting function to reduce side-
lobe leakage; and 4) each data segment is
sufficiently long to ensure adequate sgpec-
tral resolution.

The MSC is useful in detection, see
for example [2] and [3] , but is also of
value in estimating the amount of coherent
power common between two received signals.
Therefore it would be desirable having
estimated a particular value of MSC to
state with certain confidence that the true
coherence falls in a specified interval.
Early attempts to do this for 95% confid-
ence were accomplished by Haubrich [4] who
apparently used precomputed CDF curves and
used a different method of presentation
than the one used here. Related confidence
work for the magnitude coherence (3C) or
squarerocot of (2) is presented by Koopmans
{S]. Empirical results for 95% confidence
are given by Benignus [6].

DETERMINING CONFIDENCE BOUNDS

Let, C be the true but unknowa parame-
ter and e be its estimate. Then there
exists a family of CDFs such as the two
sketched in Fig. (1) for all values of C
and ¥. Por a fixed value of X, a number of

FL8=0.
C=1/3
or
C=2/3
FL7=0. _/l
o .18 .5 .63 .84 1
1 CONLO(2/3) f CONUP(2/3)
CONLO(1/3) . CONUP(1/3)

FIG. (1). PLOT OF CDF CURVES FOR
N=8, C=1/3, AND N=§, C=3/3




CDF curves, such as plotted in Fig. (1),
are generated, for various values of C.

Por each of the numerous CDF curves, we
select, as closely as possible, the
abscissa values such that the ordinate val-
ues FL8 minus FL7 yield the desired con-
fidence. The confidence intervals are not
unique, since there is no constraint such
as FL8 equal FL7. We have selected FLS8
equal FL7 but could have selected FL8 and
FL7 such that the difference in abscissa
values in Fig. (1) CONUP(C) minus CONLO(C)
was minimum. However, as long as FL8 minus
FL7 equals the desired confidence the
method presented here is correct. Now we
plot CONUP(C) and CONLO(C) versus C for
this particular value of N. A result is
sketched in Fig. (2).

1
CONUP(C)
¢
CONLO(C)
0
0 c 1

FIG. (2). HANDSKETCH OF CONFIDENCE
BOUNDS FOR A PARTICULAR VALUE OF N

MAKING CONFIDENCE STATEMENTS
ABO! C_ESTIMA

A computer program has been written to
evaluate the CDF and confidence linmits.
The mathematical details of the CDF as a
finite sum of F21 hypergeometric functions,
each one a:polynomial, are givea in [2]).
For large values of N and C, a brute force
approach to computing the CDF results in
numeric overflows, attempts to avoid this
problem can result in underflows or other
inaccuracies. The program listed in the
Appendix avoids these difficulties, it also
incorvorates CDF values when C equals zero
or unity, since these can be computed in
closed form.

Pigures (3a) and (3b) are computer
generated 80% and 95% confidence limits,
respectively. The five pairs of curves
in each figure are for N = 8, 16, 32, 64,

TD 5881

and 128 from outer to imner, respectively.
Having made an estimate with a particular
value of N, only one pair of curves applies.
An excellent discussion of the types of
statements that can be made with confid-
ence bounds is given by Cramer (7].
Suppose we obtain an estimated MSC of 0.7
from N = 8 disjoint FFTs, then we draw a
horizontal line from 0.7 on Fig. (3b) for
95% confidence limits and see where it
intersects the pair of N = 8 (outer) curves {
This occurs at (approximate abscissa
values) 0.3 and 0.86. Thus we state with ]
95% confidence that the true but unknown ‘
parameter C falls in the interval (0.3, 1
0.86). No matter what the true value of C, 3 3
1

A A S i AT

we have a 5% probability of giving an ;
incorrect statement. That is, if we make !
many estimates of 4SC and keep applying <
the rule described (whether or not C is
random or constant) we will correctly in-
clude the true value of C in the interval
that we specify 95% of the time. Some-
times the method of applying the rule is
in doubt as for example in Fig. (3b) if
the estimate comes out to be 0.3 and N = 8 p
then a horizontal line does not intersect the 5
upper confideuce limit curve unless we ;
extrapolate it backwards. Doing this means
making statements like: 'with 95% confid- -
ence the true :ISC is in the region (-0.1,
0.62). Since we know apriori that the
true value of C is non-negative, we could
Just as easily say (but with no more
confidence) that with 95% confidence (for
N =8 and C = 0.3) the true MSC falls in
the region (0.0, 0.62). Moreover, if both
intersections result in negative regions
(as for example when = 0.001 and N = 8)
we may have to make statements like with
80% confidence the true MSC lies in (0.0,
0.0). However, if we continue to apply the
rule and run the experimental trials we
will make correction statements "80%" of
the time. It is interesting to note that
due to the properties of the estimate and
our selection of FL7 and FL8 that larger
values of N do not always result in the
upper confidence bound being lower. This
also occurs in dC estimate confidence
limits [5]. It is also interesting to
note that while increasing !l is desirable,
the confidence bourds for N = 128 are still i
very large. For example, even when N = |
128 if € = 0.3 the 95% confidence intervals 3
are still (0.2, 0.38) and the 80% confid- ‘|
ence intervals (0.24, 0.38) are not much 2

2

2

Sk Lo i ol iy

better.
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LI IN APPENDIX
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APPENDIX. PROGRAM FOR CONFIDENCE BOUNDS
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_me"l
161),LAE(S

~ENSICM A(n' )ari(dC)'VZ(HC)
CO Sa Ii=1,2
L [ J:l.!-‘“
UV 39 Ic=1,nC

COuUP (IL,1,,1€)=1.0 :
; _'coﬁm.o«;L.x..“'.xcwo.o_ 3 g

O TP (N #TR (X2 Y3
20 IF 1).6. ,FLE) GO YO S7
E“"LF'z ca"([—h'"'_"——hu LT.FLB) GO 10 Js"""""‘——w
___03_.3.1.1.:1.1_-.@
((1-1)/1~'.ox + ur-'t.a-s(m/uco-osn

0 |
8§70 CO..TLiwWE

=80 CO. (XY
5§90 CONTINUE
600 couTrtve
[s] 40 IL=1»
—10 640 1=

00 64 =3 NN
‘60 P=ﬂc.z_ - : N:ZO +1J i
= - b =1
- G=FL°A (IC)/ LUAT(NC=1) ’ C°H=(XCOL)IFL°‘T‘NC-1’
L““"‘L“ﬁ’ i F2=CoNUP(1.IJolC)
2 u:ang'a =31 012, 1Js1C)
400 00 &1 =1,101 Fu-coNUP(z.NolC)
am.:..o : gio FORMAT (1X» LS»SF6.3)
A-x.o-FLOArthl i . COMRE
o N0 7%0 1 =1.2
ok g1 ' FIL=65+(ILslS)
T(t=1) s
CONLO(IL.I...U-X 0-(FL9::TE:P) . 85% ;oauﬂ'('c()hr. LIMITSyFb.10 X$°)
= ‘ A8, ’ ’
cguuﬂ(xL.x,.Ncn-x.o ' , a W
$10 K=1,100 CALL FRAME
= - 0.0 GR p0elole 2
ZSE*C CALL GRID(1»1)
%_1 & ' %o 740 TJ=3pNN
IF (2 «£Ge 0) GO TO 380 700 lc=1'NC %
__J_ELBIIIL-Z) X c=1)/ MG
Te=(1=C)/(1=2) - ( CJ-CONUP( 0 1Je 1C)

s - YZ(I%)‘;Q NLO(IL TUr2C)
IF(E .EQ 60 TO %80 7 NT INUE
Rened - O ! ITEMP=I =1
(%4 = R ——TALL ™A RKER ( ITEAP)

._._cia.":.g_-.tc" CALL CURVE(X»Y1sNCo1l)

7203 _—a!l.é't_'lfuav (X Y2INCs1)

";I’_ 790 _CONTINUE
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